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a b s t r a c t

1-Phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione (H2L) was used as an effective ionophore for
copper-selective poly(vinyl) chloride (PVC) membrane electrodes. Optimization of the composition of
the membrane and of the conditions of the analysis was performed, and under the optimized conditions
the electrode has a detection limit of 6.30 × 10−7 M Cu(II) at pH 4.0 with response time 10 s and displays a
linear EMF versus log[Cu2+] response over the concentration range 2.0 × 10−6 to 5.0 × 10−3 M Cu(II) with
a Nernstian slope of 28.80 ± 0.11 mV/decade over the pH range of 3.0–8.0. The sensor is stable for 9 weeks
and exhibits good selectivity with respect to alkali, alkali earth and transition metal ions (e.g. Na+, K+,
eywords:
opper ion-selective electrode
-Phenyl-2-(2-
ydroxyphenylhydrazo)butane-1,3-dione
zoderivatives of �-diketones
otentiometry
VC

Ba2+, Ca2+, Zn2+, Cd2+, Co2+, Mn2+, Ni2+, Fe2+, Al3+) in the 3.0–8.0 pH range. It was successfully applied for
the direct determination of copper(II) in zinc, aluminum and nickel based alloys, in soils polluted by oil,
and as an indicator electrode for potentiometric titration of copper ions with EDTA.

© 2010 Elsevier B.V. All rights reserved.
lloy analysis

. Introduction

Copper is one of the most widely spread heavy metals, hence
ts determination in environmental and industrial objects is of
remendous interest. Small quantities of copper are essential for
iving beings whereas it is highly toxic in a high concentration [1].
n the other hand, copper is an important material and exten-

ively used for industrial, agricultural and domestic purposes due
o its high electrical conductivity, chemical stability, plasticity, and
apacity to form alloys with many metals [2]. Therefore, the copper
ontent in many industrial [2], biological [3], medical [4], geochem-
cal [5], and environmental [6,7] objects must be controlled on a
aily basis and as a result, a development of novel methods for

ow-cost, simple, rapid, remote, and on-line detection and deter-
ination of copper in samples of different origin is of big interest.
Various analytical techniques have been proposed for determi-

ation of copper including spectrophotometric methods [8–14],

tomic absorption spectrometry (AAS) [15,16], cold vapour AAS
r flame AAS with electrothermal atomization [17,18], induc-
ively coupled plasma emission spectrometry [19,20], gravimetry
21,22], chromatography [23,24], and anodic stripping voltam-

∗ Corresponding author. Tel.: +351 218419237; fax: +351 218464455.
E-mail address: pombeiro@ist.utl.pt (A.J.L. Pombeiro).

304-3894/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2010.11.119
metry [25,26]. Most of the mentioned methods usually have
sufficiently low detection limit and high selectivity, but also in
many cases posses drawbacks such as high cost of equipment and
expensive materials, time-consuming and complicated operation.
Thus, these methods are generally unsuitable for simple, low cost
and remote determination of copper, especially in field and domes-
tic conditions.

At the same time, ion-selective electrodes (ISEs) provide conve-
nient and fast procedures for determination of metal or nonmetal
ions. In particular, a potentiometric detection based on ISEs offers
advantages such as simple instrumentation, speed and ease of the
sample preparation and measurements, relatively fast response,
wide dynamic range, reasonable selectivity and low cost of mate-
rials. These characteristics have led to a number of already
commercialized sensors for many ionic species, and the list of avail-
able electrodes has grown substantially over the last few years [27].
But the key component of such membrane ISE devices is the selec-
tive complexing agent (carrier, ionophore) that enables the specific
recognition of an analyte in the presence of other interfering ions.

A wide range of organic reagents has been used as ion carriers for
construction of copper selective electrodes (Table 1) [28–64], but

most of these sensors have one or more of the following disadvan-
tages: relatively low selectivity [28,31–36,39–44,46,50,56,59–64];
large response time [28,35,44,46,51,53,56,57,59]; high detection
limits [35,36,40,53]; low sensitivity [34,60]; narrow working con-
centration range [30,32,34,60,61]; complicated procedure and high

dx.doi.org/10.1016/j.jhazmat.2010.11.119
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:pombeiro@ist.utl.pt
dx.doi.org/10.1016/j.jhazmat.2010.11.119
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Table 1
Analytical parameters for some reported copper-selective PVC-membrane sensors.a

Ionophore Detection
limit (M)

Linear range (M) Response
time (s)

Slope
(mV/decade)

Selectivity
coefficient ≥10−3

Ref.

Tetraethylthiuram disulfide 1.0 × 10−8 1 × 10−8 to 1 × 10−1 27 30 Na+, Mn2+, Pb2+ [28]
13,14-Benzo-1,5-

tetrathiacyclopentadecane
1 × 10−6 to 1 × 10−1 10 29 [29]

Dithizone 1 × 10−5 to 1 × 10−3 [30]
o-Xylylene-bis(methyloctadecyl-

dithiocarbamate)
1 × 10−6 to 1 × 10−1 29 Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+,

Mn2+, Co2+, Ni2+, Zn2+
[31]

Calixdithiocarbamoylarene 1 × 10−4 to 1 × 10−2 30 K+, Ca2+, Pb2+, Cd2+ [32]
2,2′-[1,2-Ethanediyl-bis(nitriloethylidene)]-

bis(1-naphthalene)
3.1 × 10−6 5 × 10−6 to 5 × 10−2 5 29.8 Na+, Ni2+, Hg2+ [33]

3,4,10,11-Tetraphenyl-1,2,5,8,9,12,13-
octaaza-cyclotetra-deca-7,14-dithizone-
2,4,9,11-tetraene

1.6 × 10−6 1 × 10−5 to 1 × 10−2 2 27 Na+, K+, Mg2+, Ca2+, Ba2+, Zn2+,
Cd2+, Hg2+, Pb2+, Fe3+, Al3+

[34]

1,15-Diaza-3,4;12,13-dibenzo-5,8,11,18,21-
pentaoxacyclotrieicosane-2,14-dione

1.2 × 10−5 1 × 10−5 to 1 × 10−1 20 30.0 Na+, K+, Cs+, Sr2+ [35]

Aza-thioether crown containing a
1,10-phenanthroline

8.0 × 10−6 1 × 10−5 to 1 × 10−1 15 29.4 Ag+, La3+ [36]

2′-Picolyl sym-dibenzo-16-crown-5 ether 1.0 × 10−6 1 × 10−5 to 1 × 10−1 42 [37]
Bis-thiophenalpropanediamine 2.0 × 10−8 6 × 10−8 to 1 × 10−1 5 29.3 Zn2+, Hg2+ [38]
Bis-2-thiophenal propanediamine 3.0 × 10−8 1 × 10−8 to 1 × 10−1 5 29 Ni2+, Pb2+, Co2+ [39]
2,2′-Dithiodianiline 6.0 × 10−6 7 × 10−7 to 5 × 10−2 10 30.0 Pd2+, Cd2+, Hg2+, Ni2+, Pb2+, Fe3+ [40]
Copper(II)-salicylalaniline Schiff’s

base + cyanocopolymer matrice
2.5 × 10−7 to 1 × 10−2 13 28 Li+, Na+, K+, Cs+, Ag+, Ca2+, Co2+,

Ni2+, Zn2+, Cd2+, Mn2+
[41]

1,3-Dithiane,2-(4-methoxyphenyl) 1.0 × 10−6 3 × 10−6 to 5 × 10−2 5 29 K+, Cs+, Mg2+, Ca2+, Sr2+, Ag+,
Mn2+, Co2+, Ni2+, Zn2+, Cd2+,
Hg2+

[42]

Diphenylisocyanate-
bis(acetylacetone)ethylenedi-imine

6.0 × 10−7 1 × 10−6 to 1 × 10−1 15 29.8 Ni2+, Zn2+, Cd2+ [43]

1-Hydroxy-2-(prop-2′-enyl)-4-(prop-2′-
enyloxy)-9,10-antraquinone

5.0 × 10−8 8 × 10−8 to 5 × 10−2 20 29.1 Tl+, Ag+, K+, Co2+, Ni2+, Zn2+,
Pb2+, Cd2+

[44]

3,6,9,14-Tetrathiabicyclo[9.2.1]tetradeca-
11,13-diene

3.2 × 10−7 6.3 × 10−7 to 2.5 × 10−1 10 28.0 Ag+ [45]

2-Quinolyl-2-phenylglyoxal-2-
oxime(phenylglyoxal-alphamonoxime)

5.0 × 10−7 1 × 10−6 to 1 × 10−1 10–50 28.2 K+, Al3+, Fe3+ [46]

Hydrotris(3-isopropylpyrazolyl)methane 2.0 × 10−6 1 × 10−6 to 1 × 10−2 10 29 Co2+, Ni2+ [47]
2-(1′-(4′-(1′′-Hydroxy-2′′-

naphthyl)methyleneamino)
butyliminomethyl)-1-naphthol

8.0 × 10−7 1 × 10−6 to 1 × 10−1 5 29.0 Tl+ [48]

2,2′-[4,4′-Diphenyl-methane bis
(nitrilomethylidyne)]–bisphenol

3.0 × 10−6 8 × 10−6 to 1 × 10−1 15 29.5 Pb2+ [49]

1,3-Dithiane,2-(4-methoxy phenyl) 1.0 × 10−6 3 × 10−6 to 5 × 10−2 15 29.5 Na+, Ag+, Pb2+ [50]
Schiff base

(2,3-diaminopyridine + o-vanilin)
3.0 × 10−6 5 × 10−6 to 1 × 10−1 30 29.6 Ag+, Hg2+ [51]

N,N′-ethylene
bis(p-tert-butylsalicylaldiminato)

1.5 × 10−6 4 × 10−6 to 1 × 10−1 29.5 Pb2+ [52]

Thiosemicarbazone 6.0 × 10−6 6 × 10−6 to 1 × 10−1 10–50 29.2 Hg2+, Pb2+ [53]
2,2-[1,2-Ethandiyl-bis(nitrilomethylidine)-

bis]para-cresole
3.1 × 10−6 1 × 10−5 to 1 × 10−1 10 29.7 Ni2+, Co2+ [54]

6-Methyl-4-(1-phenylmethylidene)
amino-3-thioxo-1,2,4-triazin-5-one

4.8 × 10−7 1 × 10−6 to 1 × 10−1 10 29.2 Ca2+, Sr2+ [55]

N,N,N′ ,N′-tetracyclohexyl-3-thiaglutaric
diamide

2.0 × 10−9 1 × 10−7 to 1 × 10−6 60 33.5 Ag+, Zn2+, Cd2+, Pb2+ [56]

4-Amino-6-methyl-1,2,4-triazin-5-one-3-
thione

6.2 × 10−7 1 × 10−6 to 1 × 10−1 20 29.3 Hg2+, Fe3+ [57]

2-Mercaptobenzoxazole 2.0 × 10−6 5 × 10−6 to 1.6 × 10−2 29.2 Ni2+, Pb2+ [58]
1,8-Bis(2-hydroxynaphthaldiminato)3,6-

dioxaoctane
1.0 × 10−6 3.3 × 10−6 to 1.0 10–15 29.0 Na+, K+, Ag+, Ca2+, Co2+, Fe3+,

Al3+
[59]

2-{1-(E)-2-((Z)-2-{(E)-2-[(Z)-1-(2-
Hydroxyphenyl)ethylidene]hydrazono}-
1-methyl propylidene)hydra zono ethyl}
phenol

5.0 × 10−12 1 × 10−11 to 1 × 10−5 5 25.9 Ni2+, Zn2+, Pb2+, Cd2+ [60]

2,2′-[1,9-Nonanediyl
bis(nitriloethylidyne)]-bis-(I-naphthol)

8.0 × 10−7 1 × 10−6 to 5 × 10−3 10 29.0 Pb2+, Zn2+, Fe3+ [61]

2-(2-Mercaptophenylnitrilomethylidyne)-
phenol

5.0 × 10−6 7 × 10−6 to 2.6 × 10−2 10 28.3 Li+, Ca2+, Zn2+, Cd2+, Pb2+, Ce3+,
Hg2+, Ag+, Fe3+, Al3+, La3+

[62]

1,2,5,6,8,11-Hexaazacyclododeca-7,12-
dione-2,4,8,10-tetraene

8.1 × 10−8 2 × 10−7 to 1.0 × 10−1 5 29.5 K+, Tl+, Zn2+, Sr2+, Mg2+, Co2+,
Cd2+, Mn2+, Cr3+

[63]

Schiff Base
(phenylalanine + salicylaldehyde)

1.9 × 10−6 to 1.0 × 10−1 12 30 Mg2+, Sr2+, Ni2+, Co2+, Zn2+,
Cd2+, Mn2+, Hg2+, Fe3+, Al3+,
Cr3+

[64]

1-Phenyl-2-(2-
hydroxyphenylhydrazo)butane-1,3-dione

6.30 × 10−7 2.0 × 10−6 to 5.0 × 10−3 10 28.8 Fe3+ This work

a When the parameter was not indicated in the corresponding paper, a blank space is left in this table.
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ost of the carrier synthesis [35,37,45,61]. In fact, the described sen-
ors, although being prepared independently, have rather similar
arameters (e.g. compare the slopes of potentiometric responses),
owever, none of them has all excellent analytical parameters
selectivity, sensitivity, response, low detection limits and long life
ime) and the cost is also important for such devices. Therefore,
e decided to prepare a new inexpensive electrode with better
arameters at least for some of the above mentioned points.

Previously, it was shown that azoderivatives of �-diketones
ADB) have a rich tautomeric potential (Scheme 1) and can be used
or the classical spectrophotometric determination of copper(II)
65–70]. It was concluded that when azoderivatives of unsymmet-
ic �-diketones are used, the number of ADB tautomers increases
long with selectivity of copper analysis [65–81]. For this reason,
n this work we tested an unsymmetric ADB, i.e. 1-phenyl-2-(2-
ydroxyphenylhydrazo)butane-1,3-dione (H2L), in a PVC matrix as
n ionophore to prepare a Cu-selective membrane electrode.

. Experimental

.1. Materials and instrumentation

All the chemicals [analytical grade dibutyl phthalate (DBP),
enzyl acetate (BA), acetophenone (AP), o-nitrophenyl octylether
NPOE), sodium tetraphenylborate (NaTPB), oleic acid (OA),
etrahydrofuran (THF) and high-molecular-weight polyvinyl chlo-
ide (PVC)] were obtained from commercial sources (Aldrich) and
sed as received. The water used for all preparations and analy-
es was bidistilled and deionized. Ammonium hydroxide (0.1 M),
cetic acid (0.1 M), potassium hydroxide (0.1 M) and hydrochloric
cid were used for pH control; the concentrated acids (HCl 33%,
/w, HNO3 65%, w/w) were used for dissolution of samples. The

cidity of the solutions was measured using a CG825 pH-meter
ith an ESL-43-07 glass electrode adjusted by standard buffer solu-

ions and an EVL-1M3.1 silver–silver chloride reference electrode.
177 DMM (Keithley) microvoltmeter was used for the poten-

ial measurement at 25.0 ± 0.1 ◦C. The reference electrode was a
ETROHM (6.0702.100) double-junction, saturated calomel elec-

rode with KCl as the bridging solution. A starting 1.00 × 10−1 M
olution of copper(II) was prepared by dissolving Cu(NO3)2
2.5H2O in distilled water.

.2. Synthesis of H2L

H2L was synthesized according to the Japp–Klingemann reac-
ion [82] between the diazonium salt of 2-hydroxyaniline and
enzoylacetone.

.2.1. Diazotization
0.0250 mol of 2-hydroxyaniline was dissolved in 50.00 mL of

ater upon addition of 1.000 g of crystalline NaOH. The solution
as cooled in an ice bath to 0 ◦C, and 0.025 mol of NaNO2 was added
ith subsequent addition of 5.00 mL HCl in portions of 0.20 mL for
h under vigorous stirring. During the reaction the temperature of

he mixture must not exceed +5 ◦C.

.2.2. Azocoupling
1.000 g of NaOH was added to a mixture of 0.0250 mol of ben-

oylacetone with 50.00 mL of water–ethanol (1:1, v/v). The solution
as cooled in an ice bath, and a suspension of 2-hydroxyaniline

iazonium (prepared according to the procedure of Section 2.2.1)
as added in two equal portions under vigorous stirring for
h. On the next day, the formed precipitate of 1-phenyl-2-(2-
ydroxyphenylhydrazo)butane-1,3-dione (H2L) was filtered off,
ashed with water, recrystallized from ethanol and dried in air.
us Materials 186 (2011) 1154–1162

The characterization of H2L was undertaken by elemental analysis,
IR, 1H and 13C NMR spectroscopies.

Yield, 72% (based on benzoylacetone), black powder, solu-
ble in methanol, ethanol, acetone, dichloromethane, chloroform,
tetrahydrofuran and insoluble in water. Anal. Calcd for C16H14N2O3
(M = 282.29): C, 68.07; H, 5.00; N, 9.92. Found: C, 67.45; H, 4.97;
N, 9.78%. IR, cm−1: 3485 �(OH), 3360 �(NH), 1645 �(C O), 1619
�(C O· · ·H), 1597 �(C N), 756 �(Ar). 1H NMR of a mixture of enol-
azo and hydrazo tautomers (300.13 MHz, DMSO-d6). Enol-azo, ı:
CH3 signals were overlapped with the solvent peak, 6.91–7.81 (5H,
C6H5 and 4H, C6H4), 10.56 (s, 1H, HO–Ar), 12.57 (s, 1H, HO-enol).
Hydrazo, ı: CH3 signals were overlapped with the solvent peak,
6.91–7.81 (5H, C6H5 and 4H, C6H4), 10.56 (s, 1H, HO–Ar), 14.53 (s,
1H, NH). 13C{1H} NMR (100.61 MHz, DMSO-d6). Enol-azo, ı: 30.14
(CH3), 114.6 (C–N), 115.8 (CAr–N N), 120.1, 125.9, 127.8 and 129.4
(CAr–H), 130.0, 131.8 and 132.8 (CAr–H), 146.4 (CAr–OH), 191.8 (C–O),
197.0 (C O). Hydrazo, ı: 30.14 (CH3), 114.6 (CAr–N N), 115.8, 120.1,
125.9, and 127.8 (CAr–H), 129.4, 130.0, and 131.8 (CAr–H), 132.8
(C–N), 146.4 (CAr–OH), 191.8 and 197.0 (C O).

2.3. Electrode preparation

28–34 mg PVC powder, 0–65 mg plasticizer [dibutyl phthalate
(DBP), benzyl acetate (BA), o-nitrophenyl octylether (NPOE) or ace-
tophenone (AP)], 3–7 mg anionic additives [sodium tetraphenylb-
orate (NaTPB) or oleic acid (OA)] and 0–5 mg ionophore (H2L) were
dissolved in 3 mL tetrahydrofuran (THF), and stirred vigorously for
5 min. The resulting mixture was transferred into a glass dish of
2 cm diameter. After evaporation of solvent (ca. 24 h), the formed
transparent membrane of ca. 0.5 mm thickness was removed care-
fully from the glass plate, then a 5 mm diameter piece was cut
out and glued with commercial liquid PVC to one end of a PVC
tube with the same diameter. After 24 h the electrode was filled
with an internal filling solution [1.00 × 10−3 M Cu(NO3)2 × 2.5H2O
in 3 M KCl], preconditioned for 24 h in a 1.00 × 10−2 M solution
of Cu(NO3)2 × 2.5H2O before use and stored in the same solution
when not in use.

2.4. EMF measurements

All EMF measurements were carried out using the following
assembly:

Ag–AgCl|KCl (3 M)|internal solution, 1.00 × 10−3 M
Cu(NO3)2 × 2.5H2O| PVC membrane|test solution|Hg–Hg2Cl2,
KCl (saturated).

All the EMF observations were made with a 177 DMM (Keithley)
microvoltmeter. The performance of the electrodes was studied by
measuring the EMFs of copper nitrate solutions within concentra-
tion range 10−1 to 10−7 M. Each solution was stirred and the poten-
tial reading was recorded when it became stable, and then plotted
as logarithmic function of Cu(II) cation activity. The activities of
metal ions were based on the activity coefficient � , data calculated
from the modified form of the Debye–Hückel equation [83]:

log � =
[

−0.511Z2�1/2

1 + 1.5�1/2

]
+ 0.2�,

where � is the ionic strength and Z is the valency. All measurements
were carried out at 25 ± 0.1 ◦C.

The dynamic response was evaluated by sequential fast step-
wise addition under stirring of 1.00 × 10−1 M Cu2+ solution
to 1.0 × 10−6 M copper(II) nitrate solution until 1.0 × 10−5 to

1.0 × 10−2 M concentration. Every time after addition of the fol-
lowing portion of the copper solution the time until the potential
stabilization was fixed. Then the experiment was done in reverse
direction by fast stepwise sequential dilutions with water starting
from 1.0 × 10−2 M copper(II) nitrate solution.
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The electrodes’ stability and reproducibility were estimated by
omparing the slopes obtained from periodic re-calibration within
mV/decade.
.5. Determination of copper(II) in zinc-based alloys

A 0.100 g portion of the sample (A 292-2 containing Al 7.500,
g 0.020, Fe 0.0075, Cu 1.000, Si 0.100, Pb 0.013, Cd 0.010, Sn

.010% and the rest of Zn, or A 292-3 containing Al 8.200, Mg 0,045,
eric equilibria in H2L.

Fe 0.0065, Cu 0.800, Si 0.08, Pb 0.010, Cd 0.040, Sn 0.003%, and the
rest of Zn) was dissolved in a mixture of 10.00 mL of H2O, 1.00 mL
of HCl (33%), and 3–4 drops of HNO3 (65%) in a chemical beaker
at 50 ◦C. The solution was transferred into a 50.00 mL volumetric

flask, neutralized by 0.1 M KOH to pH 4 and diluted to the mark
with water. An aliquot portion of the solution was placed into a
25.00 mL volumetric flask and diluted to the mark with deionized
water. Then, the EMF of the solution was measured using the
equipment described above.
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.6. Determination of copper(II) in aluminum-based alloys

A 0.100 g portion of the sample (A 241-4 containing Si 2.000, Mn
.070, Fe 0.300, Cu 0.700, Zn 5.900, Mg 0.160% and the rest of Al,
r A 241-5x containing Si 1.400, Mn 0.200, Fe 0.600, Cu 1.300, Zn
.000, Mg 0.450% and the rest of Al) was dissolved and analyzed
nalogously as described above for the zinc-based alloys.

.7. Determination of copper(II) in nickel-based alloys

A 0.500 g portion of the sample (M 115-1 containing Cr 8.100,
o 1.450, Fe 0.050, Si 0.500, Mg 0.030, Mn 0.350, Cu 0.250, Pb 0.001,
i 0.004, Sb 0.001, P 0.005, Al 0.250, C 0.050, Ti 0.005, Zr 0.150, As
.0010%, and the rest of Ni, or M 115-2 containing Cr 9.200, Co 0.870,
e 0.035, Si 0.250, Mg 0.050, Mn 0.250, Cu 0.180, Pb 0.003, Bi 0.002,
b 0.002, P 0.003, Al 0.150, C 0.250, Ti 0.050, Zr 0.050, As 0.0025%,
nd the rest of Ni) was dissolved in a mixture of 10.00 mL of H2O,
2.00 mL of HCl (33%) and 4.00 mL of HNO3 (65%) in a chemical
eaker at 70 ◦C. The solution was then analyzed as described above
or the zinc-based alloys.

.8. Determination of copper(II) in soils polluted by oil

A sample of soils polluted by oil (Surakhany region of Azerbai-
an) was analyzed using the spectrophotometric method. A portion
2.000 g) of a sample was placed in a glassy carbon casserole and
issolved in a mixture of HF (35%, 38.00 mL), HCl (33%, 24.00 mL),
nd HNO3 (65%, 8.00 mL). The obtained paste was treated with
2.00–16.00 mL of conc. HNO3 at 60–70 ◦C to distil off HF. The
btained residue was dissolved in distilled water, filtered off and
iluted to 50.00 mL with water.

. Results and discussion

.1. Optimization of electrode membrane composition

A number of characteristics (see Section 1) are required for a
ensor to be considered as a suitable one for the ion determina-
ion. Those features, as well as the membrane composition and the
dditives employed, have been taken into account when H2L was
tudied as an ionophore [28–64]. Since the sensitivity and selec-
ivity of any membrane electrode is significantly related with the
omposition of the ion selective membrane and the used mediators
plasticizer (DBP, NPOE, BA, AP) and lipophilic additives (NaTPB,
A)], we decided to study the influence of these factors (the nature
nd amount of plasticizer, the amount of PVC and the lipophilic
dditive and ionophore) on the behaviour (the potential response)
f the proposed electrode.

The performance characteristics of several differently prepared
embranes are listed in Table 2. Since the nature of the plasti-

izer influences the dielectric constant, detection limits, sensitivity
nd selectivity of the membrane, as well as the mobility of the
onophore molecules and its complex [28–64], four plasticizers
f different polarity including DBP (εT = 6.42), NPOE (εT = 24.0),
A (εT = 5.0), and AP (εT = 17.3) were used. The results (Table 2)
how that DBP (61.00% DBP, 6.00% OA, 30% PVC, and 3% ionophore
2L, run 10) gives the best sensitivity (the Nernstian slope of
8.80 mV/decade within the copper concentration 2.0 × 10−6 to
.0 × 10−3 M) of the four studied plasticizers (Fig. 1), most probably
ue to the better solubility of H2L in it.

The potentiometric response of the membranes was greatly

mproved in the presence of lipophilic anionic additives, NaTPB
nd OA. It is known that lipophilic salts not only reduce the ohmic
esistance of the membrane, but also enhance the response and
electivity, reduce the interference caused by other anions and also
ay accelerate the exchange on the sample-membrane interface
Fig. 1. Potentiometric response of the optimized [61.00% DBP, 6.00% OA, 30% PVC,
and 3% ionophore (H2L)] H2L-based copper ion-selective electrode of run 10 (Table 2)
at pH 4 (maintained by 1 × 10−1 M ammonium hydroxyde/acetic acid buffer).

[28–64,84–92]. Thus, the influence of NaTPB and OA was studied
and it was found that the best performance was also obtained with
the above membrane composition [61.00% DBP, 6.00% OA, 30% PVC,
and 3% ionophore (H2L)] (Table 2, run 10). Probably, the higher
potentiometric response of OA is caused by the good solubility of
H2L in it, while the mobility of Na ions from NaTPB decrease with
the growth of the membrane viscosity. On the other hand, a good
correlation between the membrane thickness and the PVC con-
tent of membrane is found, thus the detection limit of the sensor
increases with decrease in the PVC content. However, if the mem-
brane is too thin, it loses its mechanical strength and can be easily
broken, as previously reported [45–48].

The concentration of the internal copper(II) solution within the
electrode was varied from 1.0 × 10−4 to 1.0 × 10−2 M, and it was
found that this variation does not cause any significant difference
in the potentiometric response of the electrodes, except for the
expected change in the intercept of the resulting Nernstian plots
(28.80 mV/decade, Fig. 1). A 1.0 × 10−3 M concentration of the inter-
nal solution is quite appropriate for smooth functioning of the
electrode system, thus we kept this concentration for further mea-
surements.

3.2. Dynamic response and life time

For analytical applications, the dynamic response time is an
important factor for any ion-selective electrode. In this study, the
practical response time was recorded by fast stepwise changing of
the Cu2+ concentration from 1.0 × 10−6 to 1.0 × 10−2 M. The actual
potential versus time (Fig. 2) shows that the dynamic response
time was <10 s (thus mainly limited by diffusion, i.e. the rate of
stirring) and then the potential remained unchanged at all stud-
ied concentrations. This short response time is most probably due
to the fast exchange kinetics of complexation–decomplexation of
Cu2+ ion with the H2L ionophore on the tested solution–membrane
interface [39]. A similar procedure in the opposite direction demon-
strated the independence of the response time from the order of
dilution. The durability tests show that the membrane electrode
with the best characteristics (run 10 from Table 2) can be used
for at least 9 weeks without any measurable response decay. After
the sensor decrease and increase, respectively. It was established
that the leaching of plasticizer, carrier, or ionic site from the poly-
meric film is the primary reason for the limit in the sensors’ lifetime
[28–64]; analogously, we suppose that these factors also influence
the decay of our electrode.
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Table 2
Membrane composition and corresponding potentiometric response in H2L-based copper-selective electrodes.

Run Composition, % (mass, w/w) Detection limit (M) Linear range (M) Slope (mV/decade)

H2L PVC DBP NPOE BA AP NaTPB OA

1 3 30 62 5 7.13 × 10−6 7.4 × 10−6 − 2.7 × 10−3 17.87 ± 0.32
2 3 30 62 5 2.55 × 10−5 3.3 × 10−5 − 8.6 × 10−4 4.70 ± 0.33
3 3 30 62 5 1.48 × 10−5 2.8 × 10−5 − 9.2 × 10−4 8.14 ± 0.30
4 3 30 62 5 2.72 × 10−5 3.6 × 10−5 − 7.3 × 10−4 6.68 ± 0.27
5 3 30 62 5 6.11 × 10−6 6.3 × 10−6 − 4.2 × 10−3 24.65 ± 0.31
6 3 30 62 5 2.59 × 10−5 3.6 × 10−5 − 9.1 × 10−4 3.80 ± 0.26
7 3 30 62 5 7.23 × 10−6 8.3 × 10−6 − 1.9 × 10−3 15.57 ± 0.29
8 3 30 62 5 3.35 × 10−5 3.4 × 10−5 − 8.3 × 10−4 4.02 ± 0.32
9 3 30 63 4 9.96 × 10−7 4.2 × 10−6 − 4.6 × 10−3 27.14 ± 0.14

10 3 30 61 6 6.30 × 10−7 2.0 × 10−6 − 5.0 × 10−3 28.80 ± 0.11
11 3 28 64 5 1.15 × 10−6 5.7 × 10−6 − 4.5 × 10−3 26.75 ± 0.13
12 3 32 60 5 5.85 × 10−7 3.0 × 10−6 − 4.8 × 10−3 27.90 ± 0.18
13 3 34 58 5 3.83 × 10−6 5.9 × 10−6 − 4.4 × 10−3 26.10 ± 0.11
14 2 30 61 7 6.95 × 10−6 7.2 × 10−6 − 3.9 × 10−3 23.64 ± 0.13

3 8.91 × 10−7 3.3 × 10−6 − 4.7 × 10−3 27.58 ± 0.17
5 4.30 × 10−6 6.0 × 10−6 − 4.3 × 10−3 25.46 ± 0.19
5 2.56 × 10−5 3.7 × 10−5 − 7.6 × 10−4 3.28 ± 0.33
5 7.25 × 10−5 7.4 × 10−5 − 6.0 × 10−4 1.97 ± 0.48

3

t
i
a
t
p
T
i
p
v
a
c
s
t

3

m
o
s
2
g

F
3
i
1

−35 

−30 

−25 

−20 

−15 

−10 

−5

0

5

10 

9 8 7 6 5 4 3 2 
pH

E (mV)

b

a

Fig. 3. Effect of pH of the test solution on the optimized [61.00% DBP, 6.00% OA, 30%
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.3. Effect of pH

The effect of the pH on the sensor response was studied using
wo different concentrations (10−4 and 10−3 M) of Cu2+ ions. Stud-
es were carried out over a pH range of 2–9. The addition of HCl
nd ammonium hydroxyde/acetic acid buffer was done dropwise
o adjust the pH. The potential remains constant over the 3.0–8.0
H range, beyond which the potential changes considerably (Fig. 3).
he observed drift at higher pH values could be due to the formation
n solution of some hydroxo complexes of Cu2+ or even to Cu(OH)2
recipitate [28–64,93]. The observed increase in potential at low pH
alues could be due to protonation of the L2−, HL−, H2L or lipophilic
dditives. Since the potential remains constant over pH 3.0–8.0, this
an be taken as the working pH range for the proposed electrode
ystem; in particular, pH 4.0 was used for all the experiments in
his work.

.4. Calibration curve and statistical data

The critical response characteristic for the electrode was deter-
ined according to IUPAC recommendations [94,95]. The response
f the proposed sensor at varying concentration of the Cu(II) ion
hows a linear response to this concentration in the range of
.0 × 10−6 to 5.0 × 10−3 M at pH 4 (Fig. 1). The slope of calibration
raph was calculated by the least-squares method [96]:
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ig. 2. Dynamic response of the optimized [61.00% DBP, 6.00% OA, 30% PVC, and
% ionophore (H2L)] H2L membrane electrode of run 10 (Table 2) for step changes

n concentration of Cu2+; (A) 1.0 × 10−6 M; (B) 1.0 × 10−5 M; (C) 1.0 × 10−4 M; (D)
.0 × 10−3 M; (E) 1.0 × 10−2 M.
PVC, and 3% ionophore (H2L)] electrode (of run 10, Table 2) response for 1 × 10−4 (a)
and 1 × 10−3 M (b) concentrations of Cu2+.

E = (−28.80 ± 0.11) pa + (89.68 ± 0.17) (r = 0.999, n = 17), where E
is the EMF, pa is the antilogarithm of the activity of copper(II), n is
the number of experiments with one electrode. The limit of detec-
tion as determined from the intersection of the two extrapolated
segments of the calibration graph was 6.30 × 10−7 M. This slope was
reproducible within 1 mV/decade error during 9 weeks indicating
the high stability and reproducibility of the proposed membrane

analytical system.

Table 3
Selectivity coefficients of various interfering ions (Mn+).a

Mn+ KMPM KMSM

Na+ 1.3 × 10−4 1.5 × 10−4

K+ 1.2 × 10−4 1.5 × 10−4

Ba2+ 1.4 × 10−4 1.6 × 10−4

Ca2+ 1.3 × 10−4 1.5 × 10−4

Zn2+ 2.2 × 10−4 2.3 × 10−4

Cd2+ 1.3 × 10−4 1.4 × 10−4

Co2+ 3.4 × 10−4 3.9 × 10−4

Mn2+ 2.1 × 10−4 2.0 × 10−4

Ni2+ 3.0 × 10−4 3.1 × 10−4

Fe2+ 1.3 × 10−4 1.5 × 10−4

Fe3+ 2.4 × 10−3 2.9 × 10−3

Al3+ 1.2 × 10−4 1.3 × 10−4

a Measured by membrane electrode of run 10 (Table 2).
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Table 4
Results of determination of copper(II) in zinc, aluminum and nickel based alloys, and soils polluted by oil (n = 5, P = 0.95).

Sample Certified copper content (%) Spectrophotometry [65–70] (%) Cu-ISE (%) RSD (%)

Zn-alloys A 292-2 1.000 1.00 ± 0.02 1.000 ± 0.023 2.3
A 292-3 0.800 0.79 ± 0.03 0.800 ± 0.027 3.4

Al-alloys A 241-4 0.700 0.68 ± 0.03 0.700 ± 0.025 3.6
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.5. Potentiometric selectivity

The most important characteristic of a membrane sensor is its
esponse for the primary ion in the presence of other cations. The
electivity coefficients of the electrode towards different cationic
pecies (Mn+) were evaluated by using both the matched potential
ethod (MPM) [97–100] and the mixed solution method (MSM)

97,98], which are recommended by IUPAC [94,95,98]. According to
he MPM, the selectivity coefficient is defined as the activity ratio of
he primary ion (A) and the interfering ion (B) that gives the same
otential change in a reference solution [97,98]. The selectivity
oefficient, KMPM, is determined as

MPM = �A

aB
(1)

here �A = a′
A − aA, aA is the initial primary ion activity and a′

A the
ctivity of A in the presence of the interfering ion, aB. The concen-
ration of Cu2+ used as primary ion in this study was 1.0 × 10−4 M.

In the mixed solution method, the selectivity coefficient, KMSM,
as evaluated graphically from potential measurements on solu-

ions containing a fixed concentration of Cu2+ ion (1.0 × 10−4 M)
nd varying amounts of interfering ions (Mn+) according to the
quation

MSMa2/n
M = aCu

{
exp

2(E2 − E1)F
RT

}
− aCu (2)

here E1 and E2 are the electrode potentials for the solution
f Cu2+ ions alone and for the solution containing interfering
ons and copper ions, respectively, and n is the charge of the
nterfering ion. According to Eq. (2), the KMSM values for diverse
ations can be evaluated from the slope of the linear graph of

Cu{exp((2(E2 − E1)F)/RT)}− aCu versus a2/n
M . The resulting values
f the selectivity coefficients are summarized and compared in
able 3.

The selectivity coefficients obtained by both methods are usu-
lly rather similar for the mono-, bi- and trivalent interfering ions.
evertheless, in the case of univalent interferences, the values
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ig. 4. Potentiometric titration curve of 50 mL of 1.0 × 10−3 M Cu2+ solution with
.0 × 10−2 M EDTA (at pH 4), using the proposed sensor as an indicator electrode.
1.29 ± 0.02 1.300 ± 0.017 1.3
0.25 ± 0.01 0.250 ± 0.010 4.0
0.18 ± 0.01 0.180 ± 0.008 4.4
(6.77 ± 0.01) × 10−4 (6.75 ± 0.02) × 10−4 3.6

obtained by the MSM are significantly larger than those by the
MPM. Such larger coefficients arise from the term a2/n in Eq. (2);
the smaller the charge of the interfering ion, n, the larger the selec-
tivity coefficient [35]. The selectivity coefficients are in the order of
10−4 to 10−3 for most of the interfering ions studied, what indicates
that the disturbance produced by these metal ions in the operation
of the Cu2+ ion-selective electrode is negligible. Among the stud-
ied interfering ions, Fe3+ has the highest selectivity coefficients, in
the range (2.4–2.9) × 10−3, what may be connected with the higher
charge and affinity of H2L to this ion. The above results also clearly
demonstrate that the electrode shows the best selectivity for the
Cu2+ ion. The H2L-based selective electrode has selectivity coef-
ficients superior to those reported for other copper ion-selective
electrodes, especially for interfering ions such as Zn2+, Cd2+, Co2+,
Mn2+, Ni2+, Al3+ and Fe2+ (Table 1) [28–64].

3.6. Analytical applications

Ion-selective electrodes are an ideal choice for both environ-
mental and industrial measurements where simplicity, speed, low
cost, possibility of automatization for rapid sampling, and selectiv-
ity in combination with accuracy are essential. The proposed Cu2+

ion-selective electrode was found to work well for determination of
copper in samples of brass–zinc, aluminum and nickel based alloys,
and soils polluted by oil (Table 4). In spite of the composite compo-
sition of the analyzed samples (See Section 2) the results obtained
using H2L-based electrode are in good agreement with the certified
copper content and the results of the spectrophotometric method
(Table 4).

In addition, the ISE was successfully applied to the titration of
a Cu2+ ion solution with EDTA, and the resulting titration curve is
shown in Fig. 4.

As shown, the amount of Cu2+ in solution can be accurately
determined with the electrode. It is interesting to note that the
resulting titration curve is unsymmetrical, as it was noticed before
[101]. Before the titration end-point, the measured potential shows
a usual logarithmic change with the amount (mL) of titrant added,
while the potential response after the end-point remains almost
constant, due to low concentration of free Cu2+ in solution.

Hence, on the basis of these results, we believe that this elec-
trode can be applied for the determination of copper in other
composite objects.

4. Conclusion

A copper-selective PVC membrane electrode was prepared with
1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione (H2L) as
a carrier and its composition (different plasticizers – DBP, NPOE,
BA, AP; and different lipophilic additives – NaTBP and OA) was
optimized. The membrane with the DBP plasticizer bearing the

composition (%, w/w) of 30:3:61:6 (PVC:H2L:DBP:OA) gives the
best performance. This electrode has a Nernstian response over
a wide (2.0 × 10−6 to 5.0 × 10−3 M) copper concentration range,
fast response time and good selectivity over a large number of
metal ions. A comparison between all the characteristics of the pro-
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osed potentiometric sensor and those of the previously known
opper ion-selective electrodes (Table 1) [28–64] indicates that the
urrent sensor shows better characteristics than several reported
lectrodes, i.e. being superior in terms of the detection limits, the
esponse time and selectivity over other metal ions.

A procedure for the determination of copper(II) in zinc, alu-
inum and nickel based alloys, and soils polluted by oil was also

eveloped. The membrane electrode was used as an indicator elec-
rode for potentiometric titration of copper ions, and the developed

ethod is selective, sensitive, reproducible, rapid, cheap and sim-
le. For these reasons, it can be used in routine analysis and can
e applied for the determination of copper in a diversity of objects
environmental, biological, medical and industrial samples with-

ut need for preconcentration or pretreatment steps and without
ignificant interaction from other cationic species present in the
amples.
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